Computing the price of the derivative that pays $\left(S_{T}^{2}-K\right)^{+}$

Math 485
December 13, 2013

1 Goal:

To compute the price of a financial derivative that pays $\left(S_{T}^{2}-K\right)^{+}$at time T where S_{t} is a geometric BM:

$$
d S_{t}=r S_{t} d t+\sigma S_{t} d B_{t}
$$

2 Derivation:

From the pricing formula:

$$
V_{0}=E\left(e^{-r T}\left(S_{T}^{2}-K\right)^{+}\right) .
$$

Note that

$$
S_{T}^{2}=S_{0}^{2} \exp \left(\left(2 r-\sigma^{2}\right) T+2 \sigma B_{T}\right)
$$

We need to utilize the Black-Scholes formula, so we want to compare S_{t}^{2} with a process with volatility 2σ. So we consider the process \bar{S}_{t} where

$$
d \bar{S}_{t}=r \bar{S}_{t} d t+2 \sigma \bar{S}_{t} d B_{t}
$$

That is

$$
\begin{equation*}
\bar{S}_{t}=\bar{S}_{0} \exp \left(\left(r-2 \sigma^{2}\right) t+2 \sigma B_{t}\right) . \tag{1}
\end{equation*}
$$

The Black-Scholes formula gives

$$
E\left(e^{-r T}\left(\bar{S}_{T}-K\right)^{+}\right)=\bar{S}_{0} N\left(\bar{d}_{1}\right)-K e^{-r T} N\left(\bar{d}_{2}\right),
$$

where

$$
\begin{aligned}
& \bar{d}_{1}=\frac{\left(r+2 \sigma^{2}\right) T-\log \left(\frac{K}{S_{0}}\right)}{2 \sigma \sqrt{T}} \\
& \bar{d}_{2}=\frac{\left(r-2 \sigma^{2}\right) T-\log \left(\frac{K}{S_{0}}\right)}{2 \sigma \sqrt{T}}
\end{aligned}
$$

So in the original computation:

$$
\begin{aligned}
V_{0} & =E\left(e^{-r T}\left(S_{T}^{2}-K\right)^{+}\right) \\
& =E\left(e^{-r T}\left(S_{0}^{2} \exp \left(\left(2 r-\sigma^{2}\right) T+2 \sigma B_{T}\right)-K\right)^{+}\right) \\
& =e^{\left(r+\sigma^{2}\right) T} E\left(e^{-r T}\left(S_{0}^{2} \exp \left(\left(r-2 \sigma^{2}\right) T+2 \sigma B_{T}\right)-\bar{K}\right)^{+}\right),
\end{aligned}
$$

where $\bar{K}=\frac{K}{e^{T T+\sigma^{2}}}$. Now we have rewritten the formula in the form similar to (1) with $\bar{S}_{0}=S_{0}^{2}$. Therefore, the conclusion is

$$
V_{0}=e^{\left(r+\sigma^{2}\right) T}\left[S_{0}^{2} N\left(\bar{d}_{1}\right)-e^{-r T} \bar{K} N\left(\bar{d}_{2}\right)\right] .
$$

